One-time pad

Definition

Let ={0,1}n\mathcal{M} = \{0,1\}^n, 𝒦={0,1}n\mathcal{K} = \{0,1\}^n, 𝒞={0,1}n\mathcal{C} = \{0,1\}^n, Enc𝐊(m)=mkDec𝐊(m)=ck\begin{align} \operatorname{Enc}_\mathbf{K}(m) = m \oplus k \\ \operatorname{Dec}_\mathbf{K}(m) = c \oplus k \end{align} where \oplus denotes bitwise XOR

Proposition

  1. A one-time pad (OTP) is a Perfectly secret Encryption scheme (correctness). Dec𝐊(Enc𝐊(m))=(mk)k=m(kk)=m0n=m\operatorname{Dec}_\mathbf{K}(\operatorname{Enc}_\mathbf{K}(m)) = (m \oplus k) \oplus k = m \oplus (k \oplus k) = m \oplus 0^n = m
  2. OTP is perfectly secure by previous theorem suffices to show that OTP is Perfectly indistinguishable.

#incomplete